skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Anqi Zhang, Chandan S."

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. The ability to record, stimulate, and modify brains of living animals would unlock numerous research opportunities and create potential clinical interventions, but it is difficult to interface with a living neural network without damaging it. We previously reported a novel approach to building neural interfaces, namely: genetically programming cells to build artificial structures to modify the electrical properties of neurons in situ, which opens up the possibility of modifying neural circuits in living animals without surgery. However, the spatiotemporal resolution, efficiency, and biocompatibility of this approach were still limited and lacked selectivity on cell membrane. Here, we demonstrate an approach using genetically-targeted photosensitizers to instruct living cells to synthesize functional materials directly on the plasma membrane under the control of light. Polymers synthesized by this approach were selectively deposited on the membrane of targeted live neurons. This platform can be readily extended to incorporate a broad range of light-controlled reactions onto specific cells, which may enable researchers to grow seamless, dynamic interfaces directly in living animals. 
    more » « less